A Lyapunov-type inequality for a fractional boundary value problem with Caputo-Fabrizio derivative

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Layers in a Two-Point Boundary Value Problem with a Caputo Fractional Derivative

A two-point boundary value problem is considered on the interval [0, 1], where the leading term in the differential operator is a Caputo fractional derivative of order δ with 1 < δ < 2. Writing u for the solution of the problem, it is known that typically u′′(x) blows up as x→ 0. A numerical example demonstrates the possibility of a further phenomenon that imposes difficulties on numerical meth...

متن کامل

A Lyapunov-type inequality for a fractional q-difference boundary value problem

In this paper, we establish a Lyapunov-type inequality for a fractional q-difference equation subject to Dirichlet-type boundary conditions. The obtained inequality generalizes several existing results from the literature including the standard Lyapunov inequality. We use that result to provide an interval, where a certain Mittag-Leffler function has no real zeros. We present also another appli...

متن کامل

Numerical solution for boundary value problem of fractional order with approximate Integral and derivative

Approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. In this paper with central difference approximation and Newton Cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. Three...

متن کامل

A generalized Lyapunov's inequality for a fractional boundary value problem

We prove existence of positive solutions to a nonlinear fractional boundary value problem. Then, under some mild assumptions on the nonlinear term, we obtain a smart generalization of Lyapunov’s inequality. The new results are illustrated through examples.

متن کامل

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Inequalities

سال: 2018

ISSN: 1846-579X

DOI: 10.7153/jmi-2018-12-77